Alzheimer's disease in Down syndrome

LonDowns consortium & Horizon21 Consortium

André Strydom Institute of Psychiatry, Psychology and Neuroscience KCL

Dementia in older adults with Down syndrome

Dementia may affect more than 90% of older adults with Down syndrome Develops 2-3 decades earlier compared to other people with Alzheimer's

Sinai, A., Mokrysz, C., Bernal, J., Bohnen, I., Bonell, S., Courtenay, K., ... & McBrien, McCarron, M., McCallion, P., Reilly, E., & Mulryan, N. (2014). A prospective 14-year J. Strydom, A. (2018). Predictors of age of diagnosis and survival of Alzheimer's longitudinal follow-up of dementia in persons with Down syndrome. Journal of disease in down syndrome. *Journal of Alzheimer's Disease*, (2017). Intellectual Disability Research, 58(1), 61-70.

Development of dementia symptoms

- Incidence of any new dementia symptoms in individuals aged 36 and older:
- 25 per 100 person-years
 (95% CI = 16.18 36.90)

Mortality in older adults with Down syndrome

In our LonDowns study, older adults (age 36 and older; n = 211)

27 died during 2 years of follow up

- 70% had a clinical diagnosis of dementia before they died Most of the rest showed signs of dementia (seizures) before they died

Alzheimer's disease is now the main cause of death in adults with Down syndrome

Hithersay R, Startin CM, Hamburg S, et al. Association of Dementia With Mortality Among Adults With Down Syndrome Older Than 35 Years. JAMA Neurol. Published online November 19, 2018. doi:10.1001/jamaneurol.2018.3616

Age at diagnosis and survival

Mean survival after diagnosis of dementia

4.44 years (mean age at death of 59.98 years, SD 5.98, range 46.9 – 75.0 years)

If diagnosed before age 50 median survival 4.94 years (95% Cl 2.22 - 7.66)

Between 50-60 - median survival of 4.06 years (95% CI 3.36 – 4.75)

After 60 - median survival of 2.56 years (95% CI 1.56 – 3.58)

Sinai, A., Mokrysz, C., Bernal, J., Bohnen, I., Bonell, S., Courtenay, K., ... & McBrien, J. Strydom, A. (2018). Predictors of age of diagnosis and survival of Alzheimer's disease in Down syndrome. *Journal of Alzheimer's Disease*.

Alzheimer's in Down syndrome is a genetic condition

- DS is due to having 3 copies of chromosome 21, with 3 copies instead of 21 two) of Chr21 genes
- Some of these genes are dosage-sensitive
- Amyloid precursor protein (APP) gene is on chr21; all DS individuals with full trisomy 21 have 3 x APP

- Rare individuals with DS without an extra APP do not develop AD
- individuals with Rare Duplication APP (without DS) all present with AD

Nature Reviews | Neuroscience

Wiseman, F. K., Al-Janabi, T., Hardy, J., Karmiloff-Smith, A., Nizetic, D., Tybulewicz, V. L., ... & Strydom, A. (2015). A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nature Reviews Neuroscience.

Amyloid cascade and preventing Alzheimer's

Amyloid B is increased in Down syndrome

SIMOA - single molecule immunoassays allows single molecules to be counted, with 1000-fold increase in sensitivity

Age matched DS, controls and AD cases

RESEARCH

Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease

Carla M. Startin^{1,2,3*}, Nicholas J. Ashton^{4,5,6,7}, Sarah Hamburg^{1,2,3}, Rosalyn Hithersay^{1,2,3}, Frances K. Wiseman^{3,8}, Kin Y. Mok^{3,9,10}, John Hardy^{3,9,11}, Alberto Lleó¹², Simon Lovestone¹³, Lucilla Parnetti¹⁴, Henrik Zetterberg^{6,8,15,16}, Abdul Hye^{4,5}, LonDownS Consortium and André Strydom^{1,2,3}

Alzheimer's

Amyloid biomarkers in blood vs. Controls (meta analysis)

• AB 42 – DS vs controls

		DS	Control		
Study or Subgroup	Mean	SD	Total	Mean	S
Fortea et al. 2018	14.22	3.12	194	9.41	1.5
Head et al. 2011	32.882883	18.57255	17	19.81982	6.722888
lulita et al. 2016	16.62	7.79037868	21	9.14	5.0109879
Schupf et al. 2001	22.4	6.1	97	14.2	4
Startin et al. 2019	25.79355	8.291008	31	15.72185	7.4302
Total (95% CI)			360		

Heterogeneity: Tau² = 0.03; Chi² = 6.20, df = 4 (P = 0.18); l² = 36% Test for overall effect: Z = 10.46 (P < 0.00001)

• AB 40 - DS vs. Controls

		DS		Control Std. Mean Difference			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rand	om, 95% Cl
Fortea et al. 2018	341.52	60.19	194	196.77	26.58	67	22.1%	2.69 [2.33, 3.05]		
Head et al. 2011	327.705628	117.80302	17	196.969697	40.201513	11	16.9%	1.33 [0.48, 2.17]		_
Iulita et al. 2016	228.4	109.06530154	21	90.17	46.76922065	31	19.1%	1.75 [1.09, 2.40]		
Schupf et al. 2001	132	44.4	97	84.7	19.6	64	22.2%	1.28 [0.94, 1.63]		
Startin et al. 2019	321.29968	108.691489	31	148.38889	75.74618	27	19.6%	1.80 [1.18, 2.42]		
Total (95% CI)			360			200	100.0%	1.79 [1.14, 2.44]		
Heterogeneity: Tau ² = 0.46; Chi ² = 32.42, df = 4 (P < 0.00001); I ² = 88% Test for overall effect: Z = 5.40 (P < 0.00001)									-4 -2 Favours (Contro	0 2 4 I] Favours [DS]

Amyloid biomarkers (blood) in DS-dementia vs. No dementia

• AB 42

	Non demented DS				
Study or Subgroup	Mean	SD	Total	Mean	SD
Coppus et al. 2012	50	17.5	62	51	14.8
Fortea et al. 2018	14.79	3.42	49	14.12	3.18
Head et al. 2011	23.783784	17.2157	52	20.585586	8.26868
Iulita et al. 2016	17.75	7.27323862	10	16.62	7.79037868
Jones et al. 2009	27.85	16.63474977	21	27.07	11.42834634
Mastouka et al. 2009	1,887.39	2,972.97	52	1,527.027	2,599.0991
Prasher et al. 2010	33.2	15.9	44	33.8	15
Schupf et al. 2010	25.8	21.77062241	61	33.4	8.59127464
Startin et al. 2019	27.06857	8.193582	7	25.42167	8.456324

Total (95% CI)

358 Heterogeneity: Tau² = 0.04; Chi² = 17.15, df = 8 (P = 0.03); I² = 53%

Test for overall effect: Z = 0.08 (P = 0.94)

• AB 40

	De	mented DS	Non-Demented DS			Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Coppus et al. 2012	352.3	103.5	62	326.4	101.3	264	16.4%	0.25 [-0.02, 0.53]	
Fortea et al. 2018	384.39	79.87	49	343.83	60.95	233	14.8%	0.63 [0.31, 0.94]	_
Head et al. 2011	289.61039	98.9575545	52	275.757576	104.62923	26	9.4%	0.14 [-0.34, 0.61]	
Iulita et al. 2016	258.5	93.28719098	10	228.4	109.06530154	21	4.7%	0.28 [-0.48, 1.04]	
Jones et al. 2009	125.6	84.13608976	21	121.32	50.70938747	39	8.0%	0.07 [-0.46, 0.60]	
Mastouka et al. 2009	1,047.619	1,389.61039	52	1,246.7532	1,662.33766	148	14.7%	-0.12 [-0.44, 0.19]	
Prasher et al. 2010	179.6	59.7	44	177.8	67.8	83	12.7%	0.03 [-0.34, 0.39]	_
Schupf et al. 2010	172.1	52.32867283	61	150.1	53.78624359	164	15.5%	0.41 [0.11, 0.71]	
Startin et al. 2019	363.71429	116.143811	7	308.92875	105.750514	24	3.8%	0.49 [-0.36, 1.35]	
Total (95% CI)			358			1002	100.0%	0.23 [0.05, 0.41]	
Heterogeneity: Tau ² = 0.03; Chi ² = 14.50, df = 8 (P = 0.07); $I^2 = 45\%$									
Test for overall effect: $Z = 2.54$ (P = 0.01)									Favours [Non-Demented] Favours [Demented]

Received: 15 April 2019 Revised: 2 August 2019 Accepted: 2 August 2019 DOI: 10.1002/dneu.22715

REVIEW ARTICLE

Plasma amyloid and tau as dementia biomarkers in Down syndrome: Systematic review and meta-analyses

WILEY

THE LonDownS CONSORTIUM

Carla Startin Sarah Hamburg Rosalyn Hithersay Tamara Al-Janabii Amanda Sinai Rory Sheehan Takis Zis Asaad Bakst Sarah Pape PhD & MSc students

John Hardy

Kin Mok

Frances Wiseman Laura Pulford Amy Nick Justin Tosh Karen Cleverley Sue Noy

Alzheimer's disease in Down syndrome:

Predictive phenotypes & markers Causative genes & mechanisms

Michael Thomas (Annette Karmiloff-Smith)

Hana D'Souza Kate Hughes Masters students

Dean Nizetic

Jurgen Groet Pollyanna Goh Niamh O'Brien

Londowns Participants and clinical collaborators

Participants

- From across England / Wales
- 124 adults aged 16-35
- 190 adults aged 36+, with follow up assessments after 2 years for 133 adults

Clinicians

- Dr Mark Scheepers
- Dr T. Hussain
- Dr Vesna Jordanova
- Dr Angela Hassiotis
- Dr Saif Sharif
- Dr Sujeet Jaydeokar
- Dr Ken Courtenay
- Professor Vee Prasher
- Dr Shahid Zaman
- Dr Salim Razak
- Dr Richard Hillier
- Dr Peter Speight
- Dr Talib Abbas
- Dr Tomas Isherwood
- Dr E Anand
- Dr Kelly Rayner

- Dr Dipti Patil
- Dr Marian Seager
- Dr Susan King
- Dr Jyoti Rao
- Dr Saadia Arshad
- Dr Lola Odebiyi
- Dr Rohit Shankar
- Dr N Perumal
- Dr Rajni Kullu
- Dr Sanjay Nelson
- Dr Kamalika Mukherji
- Dr Bini Thomas
- Dr Sandra Baum
- Dr Robert Winterhalter
- Dr Fareez Rana
- Dr Vithanaarachchi

What is our work about?

We are finding out about people with Down syndrome

 We want to find out how different parts of the brain work in people with Down syndrome

• We want to find out about differences between people with Down syndrome

• We want to find out if there are genetic or other reasons for this. Genes are like a recipe. They make us who we are.

Do you have to take part?

You can tell us **Yes** if you want to take part

You can tell us **No** if you do not want to take part

If you say no it will **not** change the care you get

If you decide to take part, we will ask you to sign a **consent form**

LonDowns Cohort

		Younger children (0-5∙5 years)	Older children (5·5-15 years)	Younger adults (16-35 years)	Older adults (36+ years)
Number		115	35	170	282
Age		$2 \cdot 18 \pm 1 \cdot 13$ (3.6 months to 5 years 1.3 months)	10.63 ± 3.05 (5 years 6.5 months to 14 years 8.5 months)	25·25 ± 5·46 (16-35 years)	50·21 ± 7·76 (36-73 years)
Sex	Male Female	62 (53·9%) 53 (46·1%)	16 (45·7%) 19 (54·3%)	83 (48·8%) 87 (51·2%)	153 (54·3%) 129 (45·7%)
Ethnicity	White	93 (81.6%)	25 (86.2%)	145 (85.3%)	261 (92.6%)
	Black	5 (4.4%)	0 (0.0%)	7 (4.1%)	11 (3.9%)
	Asian	6 (5 3%)	0 (0.0%)	8 (4 7%)	6 (2.1%)
	Mixed	7 (6.1%)	4 (13.8%)	8 (4.7%)	2 (0.7%)
	Other	3 (2.6%)	0 (0.0%)	2 (1.2%)	2 (0.7%)

All participants:

In-depth cognitive phenotyping Detailed medical history DNA samples Cell samples EEG/ ERP

Adults:

Plasma biomarker samples fNIRS, longitudinal EEG

Older adults (>36):

Longitudinal cognitive/ clinical/ fluid biomarker data after 2 & 4 years

LonDownsPREVENT:

- Run-in trial cohort aged 30 55 (n = • 120), with younger contrast group
- CSF at baseline
- Annual cognitive assessments
- Plasma
- MRI (Structural, SWI, DTI, ASL, fMRI)

Can we measure early changes due to Alzheimer's in people with Down syndrome?

Constitution probabilegia Dodoway sylndrome

Visuospatial learning Non-verbal abilities object learning due to relatively Relative Weakness in Represerved maturation of the data bilities : receptive language is better Reprint weaksystems such than expressive language memory is better he visual system long-term memor than explicit longterm memory **Visuospatial short**term memory is better than verbal Reduced hppocampal volume (pre-dementia) Cerebellar hypoplasia

Relative sparing of trunk and posterior cortical structures

Course of disorder

Previous research

Crayton et al. 1998 Devenny et al. 2000, 2002 Krinsky-McHale et al. 2002 Visser et al, 1997 Ball et al, 2008

Dementia diagnosis and cognitive outcome measures in adults with Down syndrome

Dementia diagnosis

More difficult in people with learning disabilities But reliable

- Change from an individual baseline
- Exclude other causes of decline

Int J Geriatr Psychiatry. 2015 August; 30(8): 857-863. doi:10.1002/gps.4228.

Dementia diagnostic criteria in Down syndrome

Rory Sheehan^{1,6}, Amanda Sinai¹, Nick Bass¹, Pippa Blatchford², Ingrid Bohnen³, Simon Bonell⁴, Ken Courtenay^{1,5}, Angela Hassiotis^{1,6}, Therese Markar⁷, Jane McCarthy⁸, Kamalika Mukherji⁷, Asim Naeem⁹, Dimitrios Paschos¹⁰, Natalia Perez-Achiaga², Vijaya Sharma¹¹, David Thomas¹², Zuzana Walker¹, and Andre Strydom^{1,10,13}

LonDownS research assessment battery

Cognitive assessment: general abilities, memory, executive function, attention, motor coordination **Informant questionnaires:** demographics, medical history, dementia symptoms, everyday adaptive abilities, memory, executive function **Physical examination Biological samples:** saliva (genetic analysis), hair (cellular development via induced pluripotent stem cells), blood (blood biomarkers), CSF **EEG assessment:** resting state EEG, ERP memory paradigms **fNIRS assessment:** executive functioning paradigms

LonDowns cognitive test battery

Cognitive test issues:

- Cannot use usual tests and threshold
- Baseline variable
- Floor effects

Measure earliest changes

• Range of cognitive abilities

Suitable for most people with **Down syndrome**

- Use both individual tests and carer-ratings
- Adapt scoring
- and difficulty levels where necessary

Wellcome Open Research

Wellcome Open Research 2016, 1:11 Last updated: 29 MAR 2013

Check for updates

RESEARCH ARTICLE

The LonDownS adult cognitive assessment to study cognitive abilities and decline in Down syndrome [version 1; referees: 2 approved]

Carla M. Startin ^{1,2}, Sarah Hamburg^{1,2}, Rosalyn Hithersay^{1,2}, Amy Davies^{1,3}, Erin Rodger¹, Nidhi Aggarwal¹, Tamara Al-Janabi^{1,2}, André Strydom^{1,2}

PLOS ONE

RESEARCH ARTICLE

Assessing Specific Cognitive Deficits Associated with Dementia in Older Adults with Down Syndrome: Use and Validity of the Arizona Cognitive Test Battery (ACTB)

Amanda Sinai¹*, Angela Hassiotis^{1,2}, Khadija Rantell³, Andre Strydom^{1,4,5}

Cognitive decline in DS

Earliest changes seen for memory and attention measures, with poorer performance starting from early 40s

		41-45 years	46-50 years	51-55 years	56-60 years
a	KBIT-2 verbal raw score		_	-	-
2	KBIT-2 non-verbal raw score				
	PAL first trial memory score				
	PAL stages completed				
ž	Orientation				
Ĕ	Object memory immediate trials				
Ň	Object memory delayed trial				
	DLD cognitive score				
	OMQ total score				
c	IED stage 1 errors				
ctio	IED stages completed				
, Ľ	Verbal fluency				
cutive fu	Tower of London				
	BRIEF-A total score				
Xec	BRIEF-A behavioural regulation index				
ш	BRIEF-A metacognition index				
ion	SRT total correct				
ent	SRT mean latency				
Att	SRT latency standard deviation				
r	Finger-nose pointing				
lot	NEPSY-II train and car				
N	NEPSY-II car and motorbike				
	Short ABS total score				
Ň	Short ABS personal self-sufficiency				
apt	Short ABS community self-sufficiency				
PA	Short ABS personal-social responsibility				
	DLD social score				

p<0.05

p<0.01

p<0.001

Memory changes with aging

Memory loss years before dementia diagnosis

Featured Article Cognitive markers of preclinical and prodromal Alzheimer's disease in Down syndrome

Alzheimer's & Dementia 15 (2019) 245-257

Carla M. Startin^{a,b,c,*}, Sarah Hamburg^{a,b,c}, Rosalyn Hithersay^{a,b,c}, Tamara Al-Janabi^{b,c}, Kin Y. Mok^{c,d,e}, John Hardy^{c,d,f}, LonDownS Consortium, Andre Strydom^{a,b,c}

Event-based model (EBM) to identify stages of decline

EBM estimates ordering of **binary events** from data – normal or abnormal Data can be cross-sectional and any combination of types (imaging, clinical, genetic...)

More patients have greater abnormality in Event 2 →Event2 **measurably abnormal** before Event1

Stages of decline in DS before dementia diagnosis using Event based modelling

Later stages defined by informant ratings of function (dementia diagnosis)

Firth, N. C., Startin, C. M., Hithersay, R., Hamburg, S., Wijeratne, P. A., Mok, K. Y., ... & Strydom, A. (2018). Aging related cognitive changes associated with Alzheimer's disease in Down syndrome. Annals of Clinical and Translational Neurology.

Early stages of decline defined by memory and sustained attention tests

Predictive validity of EBM staging model

Follow up of older participants (> age 35) after 2 years
General increase in EBM stage ->80% of participants either increase in stage, or

- General increase in EBM stage ->8 remain the same
- Missing data may explain outliers

Staging by APOE status

Getting ready for prevention trials in Down syndrome

How many people need to take part in a trial to show an effect?

For those with preclinical dementia (i.e. no noticeable signs of cognitive decline) and not at floor at baseline:

• 2 year trial $n \sim 400$ participants (90% power, p<0.05)

Longitudinal results - PAL first trial memory score as outcome

Biomarkers for Alzheimer's in Down syndrome

outcomes

Neurofilament light: A neuronal structural protein associated with cell death, measured with SIMOA assays in serum

Good biomarkers can speed up clinical trials if shown to be linked with clinical

Plasma and CSF biomarkers for the diagnosis of Alzheimer's 🛛 🛞 🦒 🖲 disease in adults with Down syndrome: a cross-sectional study

Juan Fortea, María Carmona-Iraqui, Bessy Benejam, Susana Fernández, Laura Videla, Isabel Barroeta, Daniel Alcolea, Jordi Pequeroles, Laia Muñoz, Olivia Belbin, Mony J de Leon, Aleksandra Maleska Maceski, Christophe Hirtz, Jordi Clarimón, Sebastián Videla, Constance Delaby, Sylvain Lehmann, Rafael Blesa*, Alberto Lleó*

Summarv

Alzheimer's

CroasMuri

Background Diagnosis of Alzheimer's disease in Down syndrome is challenging because of the absence of validated Lancet Neurol 2018

Amyloid PET brain scans

• Dementia (n=10) • Cognitive decline (n=6) • Stable cognition (n=33)

▲ Non-DS control (n=10) DS: Stable Cognition (n=33) • DS: Cognitive Decline (n=6) DS: Dementia (n=10)

> The pattern of amyloid accumulation in the brains of adults with Down syndrome Tiina Annus, Liam R. Wilson, Young T. Hong, Julio Acosta-Cabronero, Tim D. Fryer, Arturo Cardenas– Blanco, Robert Smith, Istvan Boros, Jonathan P. Coles, Franklin I. Aigbirhio, David K. Menon, Shahid H. Zaman, Peter J. Nestor, Anthony J. Holland, Alzheimer's & Dementia, Volume 12, Issue 5, Pages 538-545 (May 2016)

What next?

syndrome

• But need better cognitive outcome measures

Promising biomarkers associated with development of Alzheimer's disease

• But need to establish how it relates to cognitive changes and symptom onset over time

- But need to develop clinical trial networks Understand underlying biology to select optimal treatments
- Clinical trials based upon rational drug targets is within grasp lacksquare \bullet

We can measure cognitive change before onset of Dementia in Down

Cambridge U.

LonDowns

Institutions:

- University of Cambridge. PI: S. Zaman
- Kings College London PI: A. Strydom.
- LMU Munich. PI: J. Levin.
- Hospital of Saint Pau: J. Fortea
- Trinity College, Dublin; Norway

Institut Jérôme Lejeune, Paris. PI: A.S. Rebillat Dichterbij, Center for ID, Gennep. PI: A. Coppus.

DS 1000 Europeant trial ready cohort & registry (N=1000)

New CAMCOG-DS Leader: Shahid Zaman

Main goals:

- registry
- measures
- Validate biomarkers

New NPS tools Leader: André Strydom

Horizon21 Stop Alzheimer's before it starts

Prepare a large trial-ready cohort and

Develop clinical & cognitive outcome

Design clinical trials to ensure feasibility

Horizon 21 Genomics Consortium Leader: Tonnie Coppus, Cornelia van Duijn

Multicenter NfL study Leader: Juan Fortea

Sleep study (PSG) Leaders: Sandra Gimenez Anne-Sophie Rebillat

Funders & support

wellcometrust

The Baily Thomas Charitable Fund

Medical Research Council

EU Joint Programme – Neurodegenerative Disease Research

Maudsley Biomedical Research Centre